欧拉筛(Euler Seive)
#include <cstdio>
const int MAXN = 10000005;
int prime[MAXN], primeCnt, mu[MAXN], phi[MAXN], d[MAXN];
long long s[MAXN];
bool notPrime[MAXN];
void sieve() {
static int minFact[MAXN], minPow[MAXN];
notPrime[0] = notPrime[1] = true;
mu[1] = phi[1] = d[1] = s[1] = 1;
minFact[1] = minPow[1] = 1;
for (int i = 2; i < MAXN; i++) {
if (!notPrime[i]) {
prime[primeCnt++] = i;
mu[i] = -1;
phi[i] = i - 1;
d[i] = 2;
s[i] = i + 1;
minFact[i] = i;
minPow[i] = 1;
}
for (int j = 0; j < primeCnt && i * prime[j] < MAXN; j++) {
notPrime[i * prime[j]] = true;
if (i % prime[j] == 0) {
mu[i * prime[j]] = 0;
phi[i * prime[j]] = phi[i] * prime[j];
d[i * prime[j]] = d[i] / (minPow[i] + 1) * (minPow[i] + 2);
if (i == minFact[i]) {
s[i * prime[j]] = s[i] + i * prime[j];
} else {
s[i * prime[j]] = s[i / minFact[i]] * s[prime[j] * minFact[i]];
}
minPow[i * prime[j]] = minPow[i] + 1;
minFact[i * prime[j]] = minFact[i] * prime[j];
break;
}
mu[i * prime[j]] = -mu[i];
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
d[i * prime[j]] = d[i] * 2;
s[i * prime[j]] = s[i] * s[prime[j]];
minPow[i * prime[j]] = 1;
minFact[i * prime[j]] = prime[j];
}
}
}
int main() {
sieve();
return 0;
}