K-d Tree
求曼哈顿距离最近点对和欧几里得距离 k 远点对。
曼哈顿距离最近点对
#include <cstdio>
#include <climits>
#include <algorithm>
#include <functional>
const int MAXN = 500005;
struct Point {
int x, y;
Point(int x = 0, int y = 0) : x(x), y(y) {}
} P[MAXN];
int dist(const Point &a, const Point &b) {
return abs(a.x - b.x) + abs(a.y - b.y);
}
std::function<bool(const Point &, const Point &)> cmp[2] = {
[](const Point &a, const Point &b) {
return a.y == b.y ? a.x < b.x : a.y < b.y;
},
[](const Point &a, const Point &b) {
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
};
struct KDTree {
struct Node {
Node *c[2];
Point p, r1, r2;
Node() {}
Node (Point p) : p(p), r1(p), r2(p) {
c[0] = c[1] = NULL;
}
void maintain() {
if (c[0]) {
r1.x = std::min(r1.x, c[0]->r1.x);
r1.y = std::min(r1.y, c[0]->r1.y);
r2.x = std::max(r2.x, c[0]->r2.x);
r2.y = std::max(r2.y, c[0]->r2.y);
}
if (c[1]) {
r1.x = std::min(r1.x, c[1]->r1.x);
r1.y = std::min(r1.y, c[1]->r1.y);
r2.x = std::max(r2.x, c[1]->r2.x);
r2.y = std::max(r2.y, c[1]->r2.y);
}
}
int dist(const Point &p) {
int res = 0;
if (p.x < r1.x || r2.x < p.x) res += p.x < r1.x ? r1.x - p.x : p.x - r2.x;
if (p.y < r1.y || r2.y < p.y) res += p.y < r1.y ? r1.y - p.y : p.y - r2.y;
return res;
}
void query(const Point &p, int &res) {
res = std::min(res, ::dist(this->p, p));
if (!(c[0] || c[1])) return;
int k = (c[0] && c[1] ? c[0]->dist(p) > c[1]->dist(p) : (c[0] ? 0 : 1));
c[k]->query(p, res);
if (c[k ^ 1] && c[k ^ 1]->dist(p) < res) c[k ^ 1]->query(p, res);
}
} *root, _pool[MAXN << 1], *_curr;
KDTree() : root(NULL) {
_curr = _pool;
}
Node *build(int l, int r, Point P[], int d = 0) {
if (l > r) return NULL;
if (l == r) return new (_curr++) Node(P[l]);
int mid = l + ((r - l) >> 1);
std::nth_element(P + l, P + mid, P + r + 1, cmp[d]);
Node *u = new (_curr++) Node(P[mid]);
u->c[0] = build(l, mid - 1, P, d ^ 1);
u->c[1] = build(mid + 1, r, P, d ^ 1);
u->maintain();
return u;
}
void insert(const Point &p) {
Node **u = &root;
int d = 0;
while (*u) {
int k = cmp[d](p, (*u)->p) ^ 1;
d ^= 1;
(*u)->r1.x = std::min(p.x, (*u)->r1.x);
(*u)->r1.y = std::min(p.y, (*u)->r1.y);
(*u)->r2.x = std::max(p.x, (*u)->r2.x);
(*u)->r2.y = std::max(p.y, (*u)->r2.y);
u = &(*u)->c[k];
}
*u = new (_curr++) Node(p);
}
int query(const Point &p) {
int res = INT_MAX;
root->query(p, res);
return res;
}
} kdT;
int main() {
int n, m;
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d %d", &P[i].x, &P[i].y);
kdT.root = kdT.build(1, n, P);
while (m--) {
int op;
Point p;
scanf("%d %d %d", &op, &p.x, &p.y);
if (op == 1) kdT.insert(p);
else printf("%d\n", kdT.query(p));
}
return 0;
}
欧几里得距离 k 远点对
#include <cstdio>
#include <climits>
#include <vector>
#include <queue>
#include <algorithm>
#include <functional>
const int MAXN = 100005;
struct Point {
int x, y;
Point(int x = 0, int y = 0) : x(x), y(y) {}
} P[MAXN];
long long dist(const Point &a, const Point &b) {
return (long long) (a.x - b.x) * (a.x - b.x) + (long long) (a.y - b.y) * (a.y - b.y);
}
std::function<bool(const Point &, const Point &)> cmp[2] = {
[](const Point &a, const Point &b) {
return a.x == b.x ? a.y < b.y : a.x < b.x;
},
[](const Point &a, const Point &b) {
return a.y == b.y ? a.x < b.x : a.y < b.y;
}
};
struct KDTree {
struct Node {
Node *c[2];
Point p, r1, r2;
Node() {}
Node(Point p) : p(p), r1(p), r2(p) {
c[0] = c[1] = NULL;
}
void maintain() {
if (c[0]) {
r1.x = std::min(r1.x, c[0]->r1.x);
r1.y = std::min(r1.y, c[0]->r1.y);
r2.x = std::max(r2.x, c[0]->r2.x);
r2.y = std::max(r2.y, c[0]->r2.y);
}
if (c[1]) {
r1.x = std::min(r1.x, c[1]->r1.x);
r1.y = std::min(r1.y, c[1]->r1.y);
r2.x = std::max(r2.x, c[1]->r2.x);
r2.y = std::max(r2.y, c[1]->r2.y);
}
}
long long dist(const Point &p) {
return std::max({::dist(p, r1), ::dist(p, r2),
::dist(p, Point(r1.x, r2.y)),
::dist(p, Point(r2.x, r1.y))});
}
void query(const Point &p, std::priority_queue<long long, std::vector<long long>, std::greater<long long> > &q) {
long long d = ::dist(p, this->p);
if (d > q.top()) q.pop(), q.push(d);
if (!(c[0] || c[1])) return;
long long dis[2] = {c[0] ? c[0]->dist(p) : INT_MIN,
c[1] ? c[1]->dist(p) : INT_MIN};
int k = dis[0] < dis[1];
c[k]->query(p, q);
if (c[k ^ 1] && dis[k ^ 1] > q.top()) c[k ^ 1]->query(p, q);
}
} *root, _pool[MAXN], *_curr;
KDTree() : root(NULL) {
_curr = _pool;
}
Node *build(Point *l, Point *r, int d = 0) {
if (l > r) return NULL;
if (l == r) return new (_curr++) Node(*l);
Point *mid = l + ((r - l) >> 1);
std::nth_element(l, mid, r + 1, cmp[d]);
Node *u = new (_curr++) Node(*mid);
u->c[0] = build(l, mid - 1, d ^ 1);
u->c[1] = build(mid + 1, r, d ^ 1);
u->maintain();
return u;
}
long long query(Point P[], int n, int k) {
std::priority_queue<long long, std::vector<long long>, std::greater<long long> > q;
while (!q.empty()) q.pop();
for (int i = 0; i < k << 1; i++) q.push(-1);
for (int i = 1; i <= n; i++) root->query(P[i], q);
return q.top();
}
} kdT;
int main() {
int n, k;
scanf("%d %d", &n, &k);
for (int i = 1; i <= n; i++) scanf("%d %d", &P[i].x, &P[i].y);
kdT.root = kdT.build(P + 1, P + n);
printf("%lld\n", kdT.query(P, n, k));
return 0;
}