上下界网络流
无源无汇上下界可行流、有源有汇上细节最大流、有源有汇上下界最小流;其中有源有汇上下界最大流可改造为上下界费用流。
无源无汇上下界可行流
#include <cstdio>
#include <climits>
#include <vector>
#include <queue>
#include <algorithm>
const int MAXN = 205;
const int MAXM = 10205;
struct Edge;
struct Node;
struct Node {
std::vector<Edge> e;
Edge *curr;
int level, extra;
} N[MAXN];
struct Edge {
Node *u, *v;
int cap, flow, rev;
Edge(Node *u, Node *v, int cap, int rev)
: u(u), v(v), cap(cap), flow(0), rev(rev) {}
};
struct Pair {
int u, num, lower;
Pair() {}
Pair(int u, int num, int lower) : u(u), num(num), lower(lower) {}
int flow() const {
return N[u].e[num].flow + lower;
}
} E[MAXM];
Pair addEdge(int u, int v, int lower, int upper) {
int cap = upper - lower;
N[u].e.push_back(Edge(&N[u], &N[v], cap, N[v].e.size()));
N[v].e.push_back(Edge(&N[v], &N[u], 0, N[u].e.size() - 1));
N[u].extra -= lower;
N[v].extra += lower;
return Pair(u, N[u].e.size() - 1, lower);
}
namespace Dinic {
bool level(Node *s, Node *t, int n) {
for (int i = 0; i < n; i++) N[i].level = 0;
static std::queue<Node *> q;
q.push(s);
s->level = 1;
while (!q.empty()) {
Node *u = q.front();
q.pop();
for (Edge *e = &u->e.front(); e <= &u->e.back(); e++) {
if (e->cap > e->flow && e->v->level == 0) {
e->v->level = u->level + 1;
q.push(e->v);
}
}
}
return t->level;
}
int findPath(Node *u, Node *t, int limit = INT_MAX) {
if (u == t) return limit;
int res = 0;
for (Edge *&e = u->curr; e <= &u->e.back(); e++) {
if (e->cap > e->flow && e->v->level == u->level + 1) {
int flow = findPath(e->v, t, std::min(limit, e->cap - e->flow));
if (flow > 0) {
e->flow += flow;
e->v->e[e->rev].flow -= flow;
limit -= flow;
res += flow;
if (limit <= 0) return res;
} else e->v->level = -1;
}
}
return res;
}
int solve(int s, int t, int n) {
int res = 0;
while (level(&N[s], &N[t], n)) {
for (int i = 0; i < n; i++) N[i].curr = &N[i].e.front();
int flow;
while ((flow = findPath(&N[s], &N[t])) > 0) res += flow;
}
return res;
}
}
int main() {
int n, m;
scanf("%d %d", &n, &m);
const int s = 0, t = n + 1;
for (int i = 0, u, v, lower, upper; i < m; i++) {
scanf("%d %d %d %d", &u, &v, &lower, &upper);
E[i] = addEdge(u, v, lower, upper);
}
int sum = 0;
for (int i = 1; i <= n; i++) {
if (N[i].extra > 0) {
sum += N[i].extra;
addEdge(s, i, 0, N[i].extra);
} else if (N[i].extra < 0) {
addEdge(i, t, 0, -N[i].extra);
}
}
int maxFlow = Dinic::solve(s, t, n + 2);
if (maxFlow < sum) {
puts("NO");
} else {
puts("YES");
for (int i = 0; i < m; i++) printf("%d\n", E[i].flow());
}
return 0;
}
有源有汇上下界最大流
若要求「有源有汇上下界费用流」,将网络流改为 Edmonds-Karp 即可,最后费用是两次的费用和。
#include <cstdio>
#include <climits>
#include <vector>
#include <queue>
#include <algorithm>
const int MAXN = 205;
const int MAXM = 10000;
struct Edge;
struct Node;
struct Node {
std::vector<Edge> e;
Edge *curr;
int level, extra;
} N[MAXN];
struct Edge {
Node *u, *v;
int cap, flow, rev;
Edge(Node *u, Node *v, int cap, int rev) : u(u), v(v), cap(cap), flow(0), rev(rev) {}
};
void addEdge(int u, int v, int lower, int upper) {
int cap = upper - lower;
N[u].e.push_back(Edge(&N[u], &N[v], cap, N[v].e.size()));
N[v].e.push_back(Edge(&N[v], &N[u], 0, N[u].e.size() - 1));
N[u].extra -= lower;
N[v].extra += lower;
}
namespace Dinic {
bool level(Node *s, Node *t, int n) {
for (int i = 0; i < n; i++) N[i].level = 0;
static std::queue<Node *> q;
q.push(s);
s->level = 1;
while (!q.empty()) {
Node *u = q.front();
q.pop();
for (Edge *e = &u->e.front(); e <= &u->e.back(); e++) {
if (e->cap > e->flow && e->v->level == 0) {
e->v->level = u->level + 1;
q.push(e->v);
}
}
}
return t->level;
}
int findPath(Node *u, Node *t, int limit = INT_MAX) {
if (u == t) return limit;
int res = 0;
for (Edge *&e = u->curr; e <= &u->e.back(); e++) {
if (e->cap > e->flow && e->v->level == u->level + 1) {
int flow = findPath(e->v, t, std::min(limit, e->cap - e->flow));
if (flow > 0) {
e->flow += flow;
e->v->e[e->rev].flow -= flow;
limit -= flow;
res += flow;
if (limit <= 0) return res;
} else e->v->level = -1;
}
}
return res;
}
int solve(int s, int t, int n) {
int res = 0;
while (level(&N[s], &N[t], n)) {
for (int i = 0; i < n; i++) N[i].curr = &N[i].e.front();
int flow;
while ((flow = findPath(&N[s], &N[t])) > 0) res += flow;
}
return res;
}
}
int main() {
int n, m, s, t;
scanf("%d %d %d %d", &n, &m, &s, &t);
const int S = 0, T = n + 1;
for (int i = 0, u, v, lower, upper; i < m; i++) {
scanf("%d %d %d %d", &u, &v, &lower, &upper);
addEdge(u, v, lower, upper);
}
addEdge(t, s, 0, INT_MAX);
int sum = 0;
for (int i = 1; i <= n; i++) {
if (N[i].extra > 0) {
sum += N[i].extra;
addEdge(S, i, 0, N[i].extra);
} else if (N[i].extra < 0) {
addEdge(i, T, 0, -N[i].extra);
}
}
int maxFlow = Dinic::solve(S, T, n + 2);
if (maxFlow < sum) {
puts("No");
} else {
puts("Yes");
printf("%d\n", Dinic::solve(s, t, n + 2));
}
return 0;
}
有源有汇上下界最小流
#include <cstdio>
#include <climits>
#include <vector>
#include <queue>
#include <algorithm>
const int MAXN = 50005;
const int MAXM = 125005;
struct Edge;
struct Node;
struct Node {
Edge *e, *curr;
int level, extra;
} N[MAXN];
struct Edge {
Node *u, *v;
Edge *next, *rev;
int cap, flow;
Edge() {}
Edge(Node *u, Node *v, int cap) : u(u), v(v), cap(cap), flow(0), next(u->e) {}
} _pool[MAXM + MAXN << 1], *_curr = _pool;
Edge *addEdge(int u, int v, int lower, int upper) {
int cap = upper - lower;
N[u].e = new (_curr++) Edge(&N[u], &N[v], cap);
N[v].e = new (_curr++) Edge(&N[v], &N[u], 0);
(N[u].e->rev = N[v].e)->rev = N[u].e;
N[u].extra -= lower;
N[v].extra += lower;
return N[u].e;
}
namespace Dinic {
bool level(Node *s, Node *t, int n) {
for (int i = 0; i < n; i++) N[i].level = 0;
static std::queue<Node *> q;
q.push(s);
s->level = 1;
while (!q.empty()) {
Node *u = q.front();
q.pop();
for (Edge *e = u->e; e; e = e->next) {
if (e->cap > e->flow && e->v->level == 0) {
e->v->level = u->level + 1;
q.push(e->v);
}
}
}
return t->level;
}
int findPath(Node *u, Node *t, int limit = INT_MAX) {
if (u == t) return limit;
int res = 0;
for (Edge *&e = u->curr; e; e = e->next) {
if (e->cap > e->flow && e->v->level == u->level + 1) {
int flow = findPath(e->v, t, std::min(limit, e->cap - e->flow));
if (flow > 0) {
e->flow += flow;
e->rev->flow -= flow;
limit -= flow;
res += flow;
if (limit <= 0) return res;
} else e->v->level = -1;
}
}
return res;
}
int solve(int s, int t, int n) {
int res = 0;
while (level(&N[s], &N[t], n)) {
for (int i = 0; i < n; i++) N[i].curr = N[i].e;
int flow;
while ((flow = findPath(&N[s], &N[t])) > 0) res += flow;
}
return res;
}
}
int main() {
int n, m, s, t;
scanf("%d %d %d %d", &n, &m, &s, &t);
const int S = 0, T = n + 1;
for (int i = 0, u, v, lower, upper; i < m; i++) {
scanf("%d %d %d %d", &u, &v, &lower, &upper);
addEdge(u, v, lower, upper);
}
Edge *e = addEdge(t, s, 0, INT_MAX);
int sum = 0;
for (int i = 1; i <= n; i++) {
if (N[i].extra > 0) {
sum += N[i].extra;
addEdge(S, i, 0, N[i].extra);
} else if (N[i].extra < 0) {
addEdge(i, T, 0, -N[i].extra);
}
}
int maxFlow = Dinic::solve(S, T, n + 2);
if (maxFlow < sum) {
puts("No");
} else {
puts("Yes");
int flow = e->flow;
e->cap = e->rev->cap = 0;
printf("%d\n", flow - Dinic::solve(t, s, n + 2));
}
return 0;
}