网络流
Dinic 与 ISAP,以及最小割输出方案。
Dinic
#include <cstdio>
#include <climits>
#include <queue>
#include <vector>
#include <algorithm>
const int MAXN = 105;
const int MAXM = 5005;
struct Edge;
struct Node;
struct Node {
std::vector<Edge> e; // use Edge* when sparse graph
Edge *curr;
int level;
} N[MAXN];
struct Edge {
Node *u,*v;
int cap, flow, rev;
Edge(Node *u, Node *v, int cap, int rev) : u(u), v(v), cap(cap), flow(0), rev(rev) {}
};
void addEdge(int u, int v, int cap) {
N[u].e.emplace_back(&N[u], &N[v], cap, N[v].e.size());
N[v].e.emplace_back(&N[v], &N[u], 0, N[u].e.size() - 1);
}
namespace Dinic {
bool level(Node *s, Node *t, int n) {
for (int i = 0; i < n; i++) N[i].level = 0;
static std::queue<Node *> q;
q.push(s);
s->level = 1;
while (!q.empty()) {
Node *u = q.front();
q.pop();
for (Edge *e = &u->e.front(); e <= &u->e.back(); e++) {
if (e->cap > e->flow && e->v->level == 0) {
e->v->level = u->level + 1;
q.push(e->v);
}
}
}
return t->level;
}
int findPath(Node *u, Node *t, int limit = INT_MAX) {
if (u == t) return limit;
int res = 0;
for (Edge *&e = u->curr; e <= &u->e.back(); e++) {
if (e->cap > e->flow && e->v->level == u->level + 1) {
int flow = findPath(e->v, t, std::min(limit, e->cap - e->flow));
if (flow > 0) {
e->flow += flow;
e->v->e[e->rev].flow -= flow;
limit -= flow;
res += flow;
if (limit <= 0) return res;
} else e->v->level = -1;
}
}
return res;
}
long long solve(int s, int t, int n) {
long long res = 0;
while (level(&N[s], &N[t], n)) {
for (int i = 0; i < n; i++) N[i].curr = &N[i].e.front();
int flow;
while ((flow = findPath(&N[s], &N[t])) > 0) res += flow;
}
return res;
}
}
int main() {
int n, m, s, t;
scanf("%d %d %d %d", &n, &m, &s, &t);
for (int i = 0, u, v, w; i < m; i++) {
scanf("%d %d %d", &u, &v, &w);
addEdge(u, v, w);
}
printf("%lld\n", Dinic::solve(s, t, n));
return 0;
}
ISAP
#include <cstdio>
#include <climits>
#include <algorithm>
const int MAXN = 105;
const int MAXM = 5005;
struct Edge;
struct Node {
Edge *e, *curr; // use std::vector<Edge> when dense graph
int dist;
} N[MAXN];
struct Edge {
Node *u, *v;
Edge *next, *rev;
int cap, flow;
Edge() {}
Edge(Node *u, Node *v, int cap) : u(u), v(v), cap(cap), flow(0), next(u->e) {}
} _pool[MAXM << 1], *_curr = _pool;
void addEdge(int u, int v, int cap) {
N[u].e = new (_curr++) Edge(&N[u], &N[v], cap);
N[v].e = new (_curr++) Edge(&N[v], &N[u], 0);
N[u].e->rev = N[v].e;
N[v].e->rev = N[u].e;
}
namespace ISAP {
int cnt[MAXN], n;
Node *s, *t;
int flow(Node *u, int limit = INT_MAX) {
if (u == t) return limit;
int temp = limit;
for (Edge *&e = u->curr; e; e = e->next) if (u->dist == e->v->dist + 1 && e->cap > e->flow) {
int f = flow(e->v, std::min(temp, e->cap - e->flow));
e->flow += f;
e->rev->flow -= f;
temp -= f;
if (!temp) return limit;
}
if (!(--cnt[u->dist++])) s->dist = n + 1;
++cnt[u->dist];
u->curr = u->e;
return limit - temp;
}
long long solve(int s, int t, int n) {
ISAP::n = n;
ISAP::s = &N[s];
ISAP::t = &N[t];
for (int i = 1; i <= n; i++) {
N[i].curr = N[i].e;
N[i].dist = 0;
cnt[i] = 0;
}
cnt[0] = n;
long long res = 0;
while (N[s].dist <= n) res += flow(&N[s]);
return res;
}
}
int main() {
int n, m, s, t;
scanf("%d %d %d %d", &n, &m, &s, &t);
for (int i = 0, u, v, c; i < m; i++) {
scanf("%d %d %d", &u, &v, &c);
addEdge(u, v, c);
}
long long ans = ISAP::solve(s, t, n);
printf("%lld\n", ans);
return 0;
}
最小割输出方案
std::vector<Edge> cuts;
void bfs(int s, int t, int n) {
static std::queue<Node *> q;
while (!q.empty()) q.pop();
q.push(&N[s]);
N[s].vis = true;
while (!q.empty()) {
Node *u = q.front();
q.pop();
for (Edge e : u->e) if (e.cap > e.flow && !e.v->vis) {
e.v->vis = true;
q.push(e.v);
}
}
for (int i = 0; i < n; i++) if (N[i].vis) for (Edge e : N[i].e) {
if (e.cap == e.flow && e.cap > 0 && !e.v->vis) {
cust.push_back(e);
}
}
}