单源最短路(Single Source Shortest Path)
Dijkstra
#include <cstdio>
#include <climits>
#include <queue>
#include <algorithm>
const int MAXN = 100005;
const int MAXM = 500005;
struct Edge;
struct Node;
struct Node {
Edge *e; // use std::vector<Edge> when dense graph.
int dist;
bool vis;
} N[MAXN];
struct Edge {
Node *u, *v;
Edge *next;
int w;
Edge() {}
Edge(Node *u, Node *v, int w) : u(u), v(v), w(w), next(u->e) {}
} _pool[MAXM << 1], *_curr = _pool;
void addEdge(int u, int v, int w) {
N[u].e = new (_curr++) Edge(&N[u], &N[v], w);
N[v].e = new (_curr++) Edge(&N[v], &N[u], w);
}
namespace Dijkstra {
struct HeapNode {
Node *u;
int dist;
HeapNode(int dist, Node *u) : u(u), dist(dist) {}
bool operator<(const HeapNode &rhs) const {
return dist > rhs.dist;
}
};
void dijkstra(Node *s) {
std::priority_queue<HeapNode> q;
s->dist = 0;
q.emplace(0, s);
while (!q.empty()) {
Node *u = q.top().u;
q.pop();
if (u->vis) continue;
u->vis = true;
for (Edge *e = u->e; e; e = e->next) {
if (e->v->dist > u->dist + e->w) {
e->v->dist = u->dist + e->w;
q.emplace(e->v->dist, e->v);
}
}
}
}
int solve(int s, int t, int n) {
for (int i = 1; i <= n; i++) {
N[i].dist = INT_MAX;
N[i].vis = false;
}
dijkstra(&N[s]);
return N[t].dist;
}
}
int main() {
int n, m, s, t;
scanf("%d %d %d %d", &n, &m, &s, &t);
for (int i = 0, u, v, w; i < m; i++) {
scanf("%d %d %d", &u, &v, &w);
addEdge(u, v, w);
}
printf("%d\n", Dijkstra::solve(s, t, n));
return 0;
}
队列优化的 Bellman-Ford / SPFA
不应该使用,除非是含负权边的单次最短路(如差分约束)。求负权边的多次最短路时,请使用类似 Johnson 算法的方式。
#include <cstdio>
#include <climits>
#include <queue>
#include <algorithm>
const int MAXN = 100005;
const int MAXM = 500005;
struct Edge;
struct Node;
struct Node {
Edge *e; // use std::vetor<Edge> when dense graph
int dist, cnt;
bool inq;
} N[MAXN];
struct Edge {
Node *u, *v;
Edge *next;
int w;
Edge() {}
Edge(Node *u, Node *v, int w) : u(u), v(v), w(w), next(u->e) {}
} _pool[MAXM << 1], *_curr = _pool;
void addEdge(int u, int v, int w) {
N[u].e = new (_curr++) Edge(&N[u], &N[v], w);
N[v].e = new (_curr++) Edge(&N[v], &N[u], w);
}
namespace BellmanFord {
bool bellmanFord(Node *s, int n) {
std::queue<Node *> q;
q.push(s);
s->dist = 0;
while (!q.empty()) {
Node *u = q.front();
q.pop();
u->inq = false;
for (Edge *e = u->e; e; e = e->next) {
if (e->v->dist > u->dist + e->w) {
e->v->dist = u->dist + e->w;
if (++e->v->cnt >= n) return false;
if (!e->v->inq) {
e->v->inq = true;
q.push(e->v);
}
}
}
}
return true;
}
int solve(int s, int t, int n) {
for (int i = 1; i <= n; i++) {
N[i].dist = INT_MAX;
N[i].cnt = 0;
N[i].inq = false;
}
return bellmanFord(&N[s], n) ? N[t].dist : -1;
}
}
int main() {
int n, m, s, t;
scanf("%d %d %d %d", &n, &m, &s, &t);
for (int i = 0, u, v, w; i < m; i++) {
scanf("%d %d %d", &u ,&v, &w);
addEdge(u, v, w);
}
printf("%d\n", BellmanFord::solve(s, t, n));
return 0;
}