高斯-约当消元(Gauss-Jordan Elimination)
#include <cstdio>
#include <cmath>
#include <algorithm>
const int MAXN = 105;
const double EPS = 1e-8;
int dcmp(double a, double b = 0.0) {
double d = a - b;
return std::abs(d) <= EPS ? 0 : (d > 0 ? 1 : -1);
}
namespace GaussJordan {
double a[MAXN][MAXN];
bool solve(int n) {
for (int i = 0; i < n; i++) {
int max = i;
for (int j = i + 1; j < n; j++)
if (dcmp(std::abs(a[j][i]), std::abs(a[max][i])) > 0) max = j;
if (!dcmp(a[max][i])) return false;
if (max != i) for (int j = i; j <= n; j++) std::swap(a[i][j], a[max][j]);
for (int j = 0; j < n; j++) if (i != j) for (int k = n; k >= i; k--)
a[j][k] -= a[i][k] / a[i][i] * a[j][i];
}
return true;
}
}
int main() {
int n;
scanf("%d", &n);
using GaussJordan::a;
for (int i = 0; i < n; i++) for (int j = 0; j <= n; j++)
scanf("%lf", &a[i][j]);
if (!GaussJordan::solve(n)) puts("-1");
else for (int i = 0; i < n; i++) printf("%.4lf\n", a[i][n] / a[i][i]);
return 0;
}